Simulated Exam I (F0901B)

Disclaimer: UHScienceResource provides resources and services but is not responsible for, and expressly disclaims all liability for, damages of any kind arising out of use, reference to, or reliance on any information provided. While the information contained within the site is periodically updated, no guarantee is given that the information provided is correct, complete, and up-to-date. Moreover, UHScienceResource is not responsible for the accuracy or content of information contained in external sites provided by links.

Notice to User: Great effort has been used to make this document accurate and comprehensive but may still contain typos or other errors. If any errors are found, please email them to:

UHScienceResource@gmail.com

1. Name each of the compounds in the box provided using IUPAC naming including stereochemistry if applicable (16).
a.

b.

c.

d. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$

2. Rank the compounds in order of increasing melting point, with $1=$ lowest $\mathrm{mp}, 3=$ highest $\mathrm{mp}(6)$.

\square
3. Rank the compounds in order of increasing solubility in water, with $1=$ lowest solubility, $3=$ highest solubility (6).

4. In the acid/base reaction below, provide the products that would result AND place an arrow to show the direction of equilibrium (8).

5. Provide the hybridization in the boxes provided (12).

Bond angle of $\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}} \mathrm{O}_{\mathrm{C}}$? \qquad

Are hydrogens "a" and "b" in the same plane (YES/NO) \qquad
6. From the monochlorination of 3,4-dimethylhexane below, draw all structural isomers (8).

7. Draw important resonance contributors for the structure below. Circle the major contributor (10).

8. Draw the Newman projection of the most stable conformation of 3,4-dimethylheptane along the C3-C4 bond (6).

\square

9a. Draw the most stable chair conformation for each compound in the box below (10).

b. Which is more stable (A or B)? \qquad
10. In the monobromination of butane below, show the propagation steps of the mechanism that explains the formation of the products (10).

11. The following reaction:
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{OH}+\mathrm{HCl} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Cl}+\mathrm{H}-\mathrm{OH}$
a. With the bond dissociation energies below, calculate the overall ΔH° showing all work (4)
b. At equilibrium, are products or reactants favored? (2) \qquad

	$\begin{array}{r} \text { Bond-Di } \\ E n \end{array}$		Bond-D
Bond	kcal/mol	Band	kcal/mol
$\mathrm{H}-\mathrm{X}$ bonds and $\mathrm{X}-\mathrm{X}$ bonds		Bonds to secondary carbons	
$\mathrm{H}-\mathrm{H}$	104	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{H}$	95
D-D	106	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{F}$	106
$\mathrm{F}-\mathrm{F}$	38	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Cl}$	80
$\mathrm{Cl}-\mathrm{Cl}$	58	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Br}$	68
$\mathrm{Br}_{\mathrm{L}}-\mathrm{Br}$.	46	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{I}$	53
${ }_{\mathrm{H}-\mathrm{I}}$	36	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{OH}$	91
$\mathrm{H}-\mathrm{F}$	136	Bonds to tectivay carbons	
$\mathrm{H}-\mathrm{Cl}$ $\mathrm{H}-\mathrm{Br}$	103	Bonus to tectingy carbons	
$\xrightarrow[\mathrm{H}-\mathrm{Br}]{\mathrm{H}-\mathrm{I}}$	88		91 106
$\mathrm{H}-\mathrm{I}$ $\mathrm{HO}-\mathrm{H}$	71	$(\mathrm{CH})_{3} \mathrm{C}-\mathrm{Cl}$	79
$\mathrm{HO}-\mathrm{H}$ $\mathrm{HO}-\mathrm{OH}$	119		79 65
($\mathrm{HO}-\mathrm{OH}$	51	$\begin{aligned} & \left(\mathrm{CH}_{3}{ }_{2} \mathrm{C}-\mathrm{Br}\right. \\ & \left(\mathrm{CH}_{3} \mathrm{C}\right. \end{aligned}$	50
Methyl bonds $\mathrm{CH}_{3}-\mathrm{H}$			91
$\mathrm{CH}_{3}-\mathrm{H}$ $\mathrm{CH}_{3}-\mathrm{F}$	104	Other $\mathrm{C}-\mathrm{H}$ bonds	
$\mathrm{CH}_{3}-\mathrm{F}$ $\mathrm{CH}_{3}-\mathrm{Cl}$	109'	Other $\mathrm{C}-\mathrm{H}$ bonds (benzylic)	
$\mathrm{CH}_{3}-\mathrm{Cl}$	84	$\mathrm{PhCH}_{2}-\mathrm{H}$ - ${ }^{\text {chenzylic) }}$	85
$\mathrm{CH}_{3}-\mathrm{Br}$	70	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-\mathrm{H}$ (allylic)	87
CH_{3}-I	56		108
$\mathrm{CH}_{3}-\mathrm{OH}$	91	$\mathrm{Ph}-\mathrm{H}$ (aromatic)	110
Bonds to primary carhons		$\mathrm{C}-\mathrm{C}$ bonds	
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{H}$	98	$\mathrm{CH}_{3}-\mathrm{CH}_{3}$	88
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{F}$	107	$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{3}$	85
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl}$	81	$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{CH}_{3}$	82
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br}$	68	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{3}$	84
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{I}$	53	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{3}$	81
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}$	91		
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{H}$	98		
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{F}$	107		
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Cl}$	81		
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}$	68		
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$-I	53		
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$	91		

